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The bifurcation structure of thermohaline-driven flows is studied within one of the
simplest zonally averaged models which captures thermohaline transport: a Boussi-
nesq model of surface-forced thermohaline flow in a two-dimensional rectangular
basin. Under mixed boundary conditions, i.e. prescribed surface temperature and
fresh-water flux, it is shown that symmetry breaking originates from a codimension-
two singularity which arises through the intersection of the paths of two symmetry-
breaking pitchfork bifurcations. The physical mechanism of symmetry breaking of
both the thermally and salinity dominated symmetric solution is described in detail
from the perturbation structures near bifurcation. Limit cycles with an oscillation
period in the order of the overturning time scale arise through Hopf bifurcations on
the branches of asymmetric steady solutions. The physical mechanism of oscillation
is described in terms of the most unstable mode just at the Hopf bifurcation. The
occurrence of these oscillations is quite sensitive to the shape of the prescribed fresh-
water flux. Symmetry breaking still occurs when, instead of a fixed temperature, a
Newtonian cooling condition is prescribed at the surface. There is only quantitative
sensitivity, i.e. the positions of the bifurcation points shift with the surface heat trans-
fer coefficient. There are no qualitative changes in the bifurcation diagram except in
the limit where both the surface heat flux and fresh-water flux are prescribed. The
bifurcation structure at large aspect ratio is shown to converge to that obtained by
asymptotic theory. The complete structure of symmetric and asymmetric multiple
equilibria is shown to originate from a codimension-three bifurcation, which arises
through the intersection of a cusp and the codimension-two singularity responsible
for symmetry breaking.

1. Introduction
On the global scale, the ocean circulation is driven by wind forcing and by fluxes

of heat and fresh water through the ocean surface. The circulation driven by the
latter component is referred to as the thermohaline ocean circulation. In the present
Atlantic circulation, the zonally averaged component has a 1-cell structure with a
surface flow which is predominantly northward and a compensating southward deep
sea circulation. Changes in ocean circulation have an enormous effect on climate, due
to a strong modification of the poleward heat transport. There are indications that the
Atlantic circulation has been different in the past with corresponding different climate
states (Broecker 1993). Also the observed temporal variability on decadal or longer
time scales, for instance in temperature records, may be attributed to large-scale
changes of the thermohaline flow pattern in the Atlantic basin.
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These observations strongly motivate studies of the thermohaline ocean circulation
using a hierarchy of ocean models. Using a very simple box model, (Stommel 1961)
showed that the presence of heat and salt, with their different influence on the
density field, may lead to different stable steady flow patterns. Multiple steady ocean
circulation patterns were indeed found in extended box models and thermohaline loop
models (Welander 1986), two-dimensional Boussinesq models (Thual & McWilliams
1992), other zonally averaged models (Wright & Stocker 1991) and general circulation
models (GCMs) (Bryan 1986). The stability of the present large-scale ocean circulation
has therefore become an important issue in climate research.

Central to the issue of multiple steady states is the use of mixed boundary conditions
(Haney 1971), i.e. a prescribed temperature and fresh-water flux at the ocean surface.
In a 2-hemispheric ocean GCM, Bryan (1986) obtained a symmetric 2-cell flow pattern
by prescribing both an equatorially symmetric salinity and temperature at the ocean
surface. By diagnosing the fresh-water flux of this state, he showed that it became
unstable under mixed boundary conditions. By perturbing the symmetric state with
finite-amplitude fresh-water anomalies, Bryan (1986) further showed that aside from
the symmetric 2-cell state, also two 1-cell pole-to-pole asymmetric stable steady states
existed.

The feedback processes responsible for the transition from the symmetric towards
the asymmetric states were studied in more detail in a zonally averaged 2-hemispheric
model (Marotzke & Willebrand 1988). When a high-latitude positive salinity anomaly
is imposed on the symmetric 2-cell state with equatorial upflow, an advective feedback
process between the strength of the circulation and the associated salt transport
induces the transition to an asymmetric state. If a high-latitude negative salinity
anomaly is added, a fresh-water cap is generated, shutting down the high-latitude
convection before moving equatorward to give an asymmetric state; this feedback
process is called convective. In single-hemispheric models, a 1-cell state with deep
water formation (downflow) at high latitudes may also become unstable to high-
latitude fresh-water anomalies. Under mixed boundary conditions it may develop
into a state with deep water formation at the equator giving rise to warm deep water
(Marotzke, Welander & Willebrand 1988). This transition is referred to as a polar
halocline catastrophe, below abbreviated as PHC. Eventually, the latter state changes
rapidly into the original state because the warm deep water causes high-latitude
convection again; this rapid change is referred to as a flush.

In a 1-hemispheric ocean model comparison study Weaver et al. (1993) found
multiple equilibria and two types of sustained oscillations. One of those oscillations is
related to the horizontal gyre scale advection of salinity anomalies and is essentially
a three-dimensional phenomenon and the other oscillation is related to the above-
mentioned flushes. The mechanism of the first oscillation, which has a decadal time
scale, was described in Weaver & Sarachik (1991). The second type of oscillation
was investigated by Winton & Sarachick (1993). In the latter work, another type
of oscillation was also found at strong fresh-water flux forcing having a time scale
comparable to that of the meridional overturning. The latter type of oscillation has
also been found in the response of other models, for instance the Hamburg Large
Scale Geostrophic model (Mikolajewicz & Maier-Reimer 1990).

In view of simulations with coupled climate models, it is important to know whether
an ocean equilibrium state spun up with prescribed surface salinity and temperature is
stable under mixed boundary conditions and/or when it is coupled to an atmosphere
model. The sensitivity of the PHC to the formulation of the air–sea interaction was
demonstrated by Zhang, Greatbach & Lin (1993). No PHC was found when both heat
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flux and fresh-water flux were prescribed, whereas this transition did occur under
mixed boundary conditions. Using a global ocean model, Tziperman et al. (1994)
found that even the restoring time towards the specified salt distribution used to
obtain the ocean mean state may affect its stability under mixed boundary conditions.
A consistency criterion was proposed to choose the restoring times which give a stable
climate state. The latter result indicates that the stability of steady states is strongly
sensitive to the spatial pattern of the surface fresh-water forcing.

Instead of following a few trajectories of a particular system of equations for
different parameter sets and/or boundary conditions, much more insight into the
physics of a particular system can be obtained by a systematic search of equilibria of
the system and the critical points separating regions of different qualitative behaviour
(bifurcation points). This methodology of dynamical systems theory (Guckenheimer
& Holmes 1983) has already been applied successfully to many physical systems.
It has been used in the study of atmospheric variability (Legras & Ghil 1988) and
been applied to problems of coupled ocean–atmosphere interaction in the Tropics
(Dijkstra & Neelin 1995) and the stability of the wind-driven ocean circulation
(Speich, Dijkstra & Ghil 1995). When looking at the results of ocean models, for
thermohaline circulation, from a dynamical systems point of view three questions
arise. Do the multiple steady states result from only one or several bifurcation
points as the strength of the fresh-water flux is changed? Second, do oscillations
arise as Hopf bifurcations of these steady states or are they for example associated
with isolated limit cycles? Third, is the origin of the sensitivity to surface boundary
conditions caused by a fast movement of the bifurcation points in parameter space
(i.e. a quantitative change), or by a complete change in the structure of these points
(i.e. a qualitative change)? By systematically computing bifurcation diagrams in
parameter space and their change with different boundary conditions these questions
are addressed in this paper.

The steady-state structure of simple box models of the thermohaline circulation
has been systematically analysed in several cases (Thual & McWilliams 1992). Box
models may serve as ‘toy’ models to investigate one particular issue in isolation,
for example the effect of the salinity restoring time (Tziperman et al. 1994). The
main disadvantage of box models is that the coupling between boxes may not
converge to that of the spatial coupling between relevant degrees of freedom in the
governing system of partial differential equations. This may lead to many artificial
steady states and artificial oscillations. Coupling between spatial degrees of freedom
is present in two-dimensional models, for example the zonally averaged models
Wright & Stocker (1991) or non-rotating Boussinesq models (Cessi & Young 1992,
Quon & Ghil 1992, Thual & McWilliams 1992). It is the latter type of models on
which we focus attention in this paper. Although these models are highly idealized
as ocean models, the results obtained so far indicate that much of the underlying
dynamical structure – of phenomena which have a two-dimensional character – in
the large-scale ocean models is also present in these simple models. For example, the
stable steady states of this model have shown a number of similarities with those
of complex three-dimensional ocean models (Weaver & Hughes 1992). Although the
relation between the solutions of both types of models is still unclear, the model
under study is one in which the physics of the thermohaline transport is captured. It
has clearly the advantage that the results can be analysed in detail. Therefore, the
results are valuable in the interpretation of more detailed models. As such, this type of
model has recently been used as the ocean component of a coupled ocean–atmosphere
model (Saravanan & McWilliams 1995).
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Thual & McWilliams (1992) showed that the transition from restoring to mixed
boundary conditions is not essential to obtain multiple equilibria. By increasing the
strength of a prescribed fresh-water flux there is a regime where multiple stable states
appear. A bifurcation diagram was proposed but could not completely be verified, be-
cause only stable states could be reached with transient integration. Asymptotic anal-
ysis in the large-aspect-ratio (ratio of width to height) limit by Cessi & Young (1992)
showed that signatures of multiple steady states already occur in the small forc-
ing limit. Their asymmetric solutions are not globally defined and the amplitude
equation they derive does not seem able to capture the solution structure found
in Thual & McWilliams (1992). Using the same model, Quon & Ghil (1992) found
multiple steady states and obtained an approximate bifurcation diagram. They pro-
posed a supercritical pitchfork bifurcation as the origin of symmetry breaking of the
thermally dominated solution and the occurrence of asymmetric states. Furthermore,
they presented the path of this bifurcation point in the plane spanned by the Rayleigh
number and the fresh-water flux strength. In a follow-up paper (Quon & Ghil 1995),
oscillatory solutions were found in the large-aspect-ratio regime, in a model with
anisotropic diffusivities. Quon & Ghil (1992, 1995) applied the switch from restoring
to mixed boundary conditions at each value of the Rayleigh number. The spatial
pattern of the fresh-water flux therefore depends on the Rayleigh number, which
hinders a straightforward comparison with the results in Thual & McWilliams (1992)
and Cessi & Young (1992).

In this paper, we present a bifurcation study of solutions in the two-dimensional
Boussinesq model by solving for branches of steady states in parameter space using
path-following techniques. These techniques are superior to transient integration,
because both stable and unstable branches of solutions can be computed. Moreover,
the bifurcation points at these branches can be computed accurately and consequently
the regions of different qualitative behaviour can be identified as paths of these points.
The first focus of the paper is the origin of symmetry breaking and its sensitivity to
parameter changes and different surface boundary conditions. The second focus is the
occurrence of oscillatory instabilities as Hopf bifurcations of particular steady states
in this system and their sensitivity to the spatial pattern of the prescribed fresh-water
flux. The third focus is the description of physical mechanisms of symmetry breaking
and oscillatory instabilities through a study of the interaction of the perturbations
(near criticality) and the equilibrium state.

In §2, the model and the numerical techniques used are briefly described. In §3, the
bifurcation structure is determined for the relatively small-aspect-ratio case as con-
sidered in Quon & Ghil (1992). Integral properties of the solutions are investigated
as well as the physics of the instabilities that are found. The effects of the type of
boundary conditions on the bifurcation diagram are studied in §4. In the next section,
the bifurcation structure is followed into the large-aspect-ratio limit and the results
are connected to those in Cessi & Young (1992) and Thual & McWilliams (1992).
This is followed by a discussion in §6 on what types of trajectories one can expect in
these models and the relevance of these results to the behaviour of ocean models.

2. Formulation
2.1. Model equations and non-dimensionalization

The Boussinesq model of the zonally averaged thermohaline circulation is similar
to that used previously in Cessi & Young (1992), Quon & Ghil (1992) and Thual
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Figure 1. Model set-up and boundary conditions for salinity and temperature;
EQ indicates the equator.

& McWilliams (1992). It is considered for a two-dimensional pole-to-pole ocean
basin of length L and depth H (figure 1). The diffusivities of heat κT , salt κS , and
momentum ν, are assumed constant and must be interpreted as eddy diffusivities. A
linear equation of state is assumed, with thermal and solutal coefficients indicated by
αT and αS .

The governing equations are non-dimensionalized using scales H , κT/H , ∆T , and
∆S/λ for length, velocity, temperature and salinity, respectively. Here ∆T and
∆S are characteristic meridional temperature and salinity differences and λ is the
buoyancy ratio (λ = αS∆S/(αT∆T ). With horizontal and vertical velocities u and
w, respectively, the governing equations in streamfunction ψ and vorticity ω (with
u = ∂ψ/∂z, w = −∂ψ/∂x and ω = ∂w/∂x− ∂u/∂z) formulation are

Pr−1

(
∂ω

∂t
+ u

∂ω

∂x
+ w

∂ω

∂z

)
= ∇2ω + Ra

(
∂T

∂x
− ∂S

∂x

)
, (2.1a)

ω = −∇2ψ, (2.1b)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= ∇2T , (2.1c)

∂S

∂t
+ u

∂S

∂x
+ w

∂S

∂z
= Le−1∇2S. (2.1d)

All boundaries are assumed stress free and the lateral and bottom boundary are
isolated and impervious to salt, i.e.

x = 0, A : ψ = ω =
∂S

∂x
=
∂T

∂x
= 0, (2.2a)

z = 0 : ψ = ω =
∂S

∂z
=
∂T

∂z
= 0. (2.2b)

At the ocean surface, the usual mixed boundary conditions are given by

z = 1 : ψ = ω = 0, T = TS (x),
∂S

∂z
= σQS (x), (2.2c)

where the function TS (x) is a prescribed temperature distribution along the ocean
surface. The parameter σ measures the strength of the surface fresh-water flux (the
latter is also called a virtual salt flux) and QS (x) represents its spatial structure. When
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the surface integral of this function is zero, the total salt content is conserved for each
steady state.

Besides σ in (2.2c), the equations above contain four other dimensionless parameters,
the Prandtl number Pr, the Lewis number Le, the thermal Rayleigh number Ra, and
the aspect ratio A defined by

Pr =
ν

κT
; Le =

κT

κS
; Ra =

g αT ∆TH
3

νκT
; A =

L

H
. (2.3)

Apart from parameters appearing in the functions TS (x) and QS (x), the equations
form a dynamical system having five parameters (σ, A, Ra, Le, P r). In addition to Le
and Pr, three other parameters, i.e. RaT , σ and d are used in Quon & Ghil (1992),
whereas in Thual & McWilliams (1992), the parameters a, b and k are used. For
convenience and later reference, we give the expressions for these parameters in terms
of the ones used here:

RaT = A3 Ra; d =
1

A
; a =

Ra

A2
; b = σa; k =

2π

A
. (2.4)

2.2. Numerical methods and validation of results

The stationary version of the equations (2.1) and boundary conditions (2.2) are
discretized using a control volume method as in Dijkstra (1992) on a (non-) equidistant
grid for i = 0, . . . , N; j = 0, . . . ,M. This gives a nonlinear system of algebraic equations
of the form

F N,M(u, p) = 0 (2.5)

where u is the 4(N + 1)(M + 1) dimensional solution vector consisting of the un-
knowns at the gridpoints. The vector p consists of the values of the parameters
(σ, A, Ra, Le, P r). Steady solutions are calculated using pseudo-arclength continu-
ation and the linear stability of a particular solution is determined by solving the
corresponding generalized eigenvalue problem. The numerics of the code and its
performance for several test problems is described in Dijkstra et al. (1995).

There is a special requirement in the mixed boundary condition formulation. Since
the salinity field is only determined up to an additive constant, the Jacobian matrix
of the nonlinear algebraic system of equations after discretization is singular. The
additive constant is determined by an integral constraint expressing the conservation
of salt over the total volume. In this case, because the function QS (x) is chosen such
that the integral over the surface is zero, this constraint is automatically satisfied as
the parameters are varied. The system of equations is regularized by substituting an
equation, fixing the salt field at a particular point, for one of the algebraic equations
in (2.5).

The accuracy of the results was considered for a particular case in Quon & Ghil
(1992). In their notation we fix d = 0.2 and RaT = 5 106. The function TS (x) given
by

TS (x) =
1

2

(
cos

(
2π

(
x

A
− 1

2

))
+ 1

)
(2.6)

and the flux QS (x) was computed in the same way as in Quon & Ghil (1992) and is
shown as the solid curve in figure 3. The bifurcation diagram is similar to that of
figure 16 in Quon & Ghil (1992) and shown for N = 60, M = 30 in figure 2. The
vertical axis in figure 2 is the value of the streamfunction (ψc) at the centre of the
flow domain. Note that in Quon & Ghil (1992) results were presented using σ/0.32,
instead of σ. Results on the accuracy of the symmetry-breaking pitchfork bifurcation
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Figure 2. Bifurcation diagram for the case considered in figure 16 of Quon & Ghil (1992), with
A = 5.0 and Ra = 4.0× 104. On the vertical axis, the streamfunction at the centre is plotted. In this
plot and similar ones below, solid (dashed) lines indicate stable (unstable) solution branches.

N M σP

30 15 0.1075
60 30 0.1143

120 60 0.1160
240 120 0.1164

Table 1. Values of σ at the symmetry-breaking bifurcation point P in figure 2 for several grids

point P in figure 2 are shown in table 1. A monotonically increasing value of σP is
found with nearly quadratic convergence of this value with decreasing grid size. A
60× 30 grid gives sufficiently accurate results since σP differs less than 2% from the
high-resolution value; this resolution is used in the computations below. The value
of σP at the pitchfork bifurcation P is very close to that in Quon & Ghil (1992)
although we prescribed slightly different boundary conditions, because we allow slip
at both horizontal walls. At large fresh-water forcing, where the circulation is nearly
pole to pole, the stable steady states become unstable to time-periodic perturbations
at the Hopf bifurcation points H . The latter were not shown in Quon & Ghil (1992),
but were found in Quon & Ghil (1995) in a different region of parameter space.

3. Results
The parameters Pr = 2.25 and Le = 1 are fixed as in Quon & Ghil (1992). The

value of Le is reasonable because there are no good arguments why the large-scale
heat and salt transport due to (turbulent) subgrid-scale processes should be different.
The value of Pr is chosen for comparison with results in Quon & Ghil (1992); the
bifurcation diagrams presented below hardly change quantitatively if Pr is increased.
The aim of this section is (i) to investigate the structure of stable and unstable steady
solutions for the particular case Ra = 4 × 104 and A = 5, (ii) to study integral
properties of the solutions and (iii) to describe the physical mechanisms of symmetry
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Figure 3. The fresh-water flux forcing QS (x) as a function of x. The solid line is the fresh-water
flux used to compute figure 2. The other curves are the flux according to equation (3.1) in the text
for two values of p.

breaking and overturning oscillations associated with the occurrence of pitchfork and
Hopf bifurcations.

3.1. Bifurcation diagram

For Ra = 4× 104 and A = 5, the fresh-water flux used to compute figure 2 is shown
as the solid curve in figure 3. This flux can be well-approximated by a function of the
form

QS (x) = 3 cos

(
pπ

(
x

A
− 1

2

))
− 6

pπ
sin

(
p
π

2

)
(3.1)

By varying the parameter p in (3.1), the spatial pattern is changed and two examples
(p = 2.0 and p = 2.6) are shown in figure 3. When p is changed, the fresh-water flux
mainly varies in the polar regions.

The bifurcation diagram computed by prescribing (2.2c) with (2.6) and (3.1), the
latter with p = 2.6, is presented in figure 4. The value at the vertical axis (ψRM) is
that of the streamfunction at the particular gridpoint (i = 45, j = 15), such that
the different branches can be well distinguished in a plot. Bifurcation points along
the branches are indicated by symbols: squares indicate pitchfork bifurcations and
triangles Hopf bifurcations. Saddle node bifurcations (limit points) are not marked
because they are obvious from the shape of the branches. Solid branches indicate
linearly stable solutions whereas the solutions along dashed branches are unstable.
Corresponding flow patterns (through contour plots of the streamfunction ψ) and
salinity fields at several marked points along the branches in figure 4 are shown in
figure 5.

For small σ, the bifurcation diagram in figure 4 is qualitatively similar to that
in figure 2. The symmetric (figure 5a) thermally dominated 2-cell state – along
the TH-branch (Thual & McWilliams 1992) – becomes unstable at the supercritical
pitchfork P1 near σ = 0.13 at which two symmetry-related asymmetric states stabilize.
Both asymmetric states (the southward sinking solution is shown in figure 5b) – PP-
branches in Thual & McWilliams (1992) – remain stable up to the Hopf bifurcations
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Figure 4. Bifurcation diagram for the case A = 5, Ra = 4.0×104 and prescribed QS (x) with p = 2.6.
On the vertical axis, now the streamfunction value at a particular gridpoint ψRM = ψ(45, 15) is
shown.

H1 at σ = 1.06 where they becomes unstable. At slightly larger σ, these states
stabilize again at the Hopf bifurcations H2 (σ = 1.44), but they eventually destabilize
at the limit point L3 (σ = 1.47). Along an unstable branch, the 1-cell patterns then
deform towards 2-cell solutions with equatorial downwelling (figure 5c) and connect
at a second pitchfork bifurcation P2 (σ = 0.24) to the stable branch of a salinity-
dominated 2-cell (figure 5d) solution, the SA-branch in Thual & McWilliams (1992).
The stability properties of this branch are difficult to detect very near P2. The SA-
solution is certainly stable for σ > 0.37 and remains stable up to large values of σ.
For values of σ < 0.37, Hopf bifurcations may exist along the SA-branch but are
hard to detect. The unstable 2-cell TH-solution also connects up to the SA-branch at
P2, after it has gone through two limit points L1 and L2, the latter being very close
to P2. Hence, there are three σ-intervals where a unique stable steady state appears,
and three intervals where there are multiple stable steady states. The latters intervals
are given by the σ-values between both pitchfork bifurcations P1 and P2, between the
pitchfork P2 and the Hopf bifurcation H1 and between the Hopf bifurcation H2 and
the limit point L3.

3.2. Integral properties of the solutions

In the previous section it was found that only four types of solutions are linearly
stable. In this section, we investigate integral properties of these solutions. One can
anticipate that on the TH-branch, the solution is thermally driven and that on the
SA-branch it is saline driven. However, it is not immediately clear what the dominant
driving force is on both asymmetric branches, how the overturning transport varies
with the driving force and how salt is transported by the overturning flow.

Whether the flow is saline or thermally driven can be decided from the volume-
integrated mechanical energy balance. This balance is obtained by taking the inner
product of the velocity and the momemtum balance and integrate the resulting
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Figure 5. Contour plots of streamfunction, and salinity for marked points in figure 4. In these
plots and all others below, all fields are scaled with their absolute maximum value and contours are
relative to this maximum. Contour interval is 0.2 and dashed contours represent negative values.

equations over the flow domain. This gives with u = (u, w),

Pr−1 dE
dt

= −〈D〉+ Ra 〈wT − wS〉 (3.2a)

where the volume-integrated kinetic energy E is defined as

E(t) = 1
2
〈u · u〉 ≡ 1

2A

∫ A

0

∫ 1

0

u · u dxdz (3.2b)

and D is the dissipation function,

D =

(
∂u

∂x

)2

+

(
∂u

∂z

)2

+

(
∂w

∂x

)2

+

(
∂w

∂z

)2

. (3.2c)

Because the dissipation D is always positive, it follows from (3.2a) that in steady
state 〈wT − wS〉 > 0. Hence, we can distinguish the solutions according to the sign
of 〈wT 〉 and 〈wS〉. The solution is thermally driven and inhibited by fresh-water
forcing if 〈wT 〉 > 0 and 〈wS〉 > 0. It is saline driven and inhibited by thermal forcing
if 〈wT 〉 < 0 and 〈wS〉 < 0 and it is driven by both mechanisms if 〈wT 〉 > 0 and
〈wS〉 < 0. If 〈wT 〉 < 0 and 〈wS〉 > 0 then there can be no steady flow.
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In figure 6(a), the values of 〈wT 〉, 〈wS〉 and 〈wB〉 = 〈wT 〉 − 〈wS〉 are plotted
along the TH-branch from σ = 0 until the point P2 in figure 4. Along this branch,
both 〈wT 〉 and 〈wS〉 are positive, indicating that the solutions are thermally driven
and inhibited by fresh-water forcing. At the limit point L1, both quantities go
through maximal values, whereas 〈wB〉 assumes a minimal value. A similar plot
(figure 6(b)) along the SA branch in figure 4 shows that both 〈wT 〉 and 〈wS〉 are
negative along this branch. Hence, the solutions are saline driven and inhibited
by thermal forcing and 〈wB〉 increases along the branch. On the PP-branches
originating from the symmetry-breaking bifurcation, 〈wS〉 is negative and 〈wT 〉
decreases monotically and even becomes negative at P2, where the branch connects
to the SA-branch (figure 6c). At the bifurcation point P1, the value of 〈wS〉 is still
small whereas the value of 〈wT 〉 is positive. The stable pole-to-pole solutions are
therefore driven by both thermal and saline forcing. It is remarkable that at the
limit point L2, the value of 〈wB〉 goes through a maximum. One can therefore
characterize the limit points in the bifurcation diagram by the extrema of these
integral properties.

A second issue of interest is the relation between the overturning strength and the
driving force of the circulation. In recent work (Rahmstorf, Marotzke & Willebrand
1995), it was found that within an ocean general circulation model, there is a
near linear relation between these quantities. In the model used here, the overturning
strength is conveniently measured by the maximum of the streamfunction ψM . For the
density difference driving the flow, one could take a difference in the density between
the north and south ends of the basin, for instance at the surface or vertically
integrated. However, in that case it turns out that the result is quite sensitive to
the choice of the horizontal positions from which the density gradient is computed.
Alternatively, the volume-integrated energy balance (3.2a) provides a definition for
the driving force. Since 〈wB〉 drives the flow, a characteristic vertical velocity wo can
be defined by the overturning strength together with an overall density difference ∆ρ
responsible for driving the flow as

wo∆ρ = −〈wB〉 (3.3a)

If L is the (dimensionless) horizontal scale over which downwelling occurs for any
solution, then wo ≈ ψM/L. Once the relation between 〈wB〉 and the overturning
strength is determined, the relation between ∆ρ and ψM follows from (3.3a). In
figure 7, we have plotted 〈wB〉1/2 against ψM along the branches in figure 4. It
turns out that on each branch the relations are not exactly linear but do not deviate
too much. These deviations might result from the influence of the sidewalls, which
can be substantial at the relatively small aspect ratio considered in figure 4. The
relation indeed becomes better in the large-aspect-ratio limit, where one term in the
dissipation (i.e. (∂u/∂z)2) becomes dominant. In this case, we find from (3.2a) and
(3.3a) that

wo∆ρ ≈ −
〈(

∂2ψ

∂z2

)2〉
. (3.3b)

As an estimate of the right-hand side of (3.3b), we can approximate the second
derivative at the horizontal location of maximum overturning by central differences
and use the fact that ψ is zero at the top and bottom of the domain. This rough
estimate then leads, with the previous scaling for wo, to a linear relation ∆ρ ≈ ψM . It
would be interesting to investigate this relation in more realistic ocean models using
a definition of ∆ρ based on the overall energy balance.
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Figure 7. Plot of the maximum streamfunction ψM along the branches in figure 4 against a
measure of the buoyancy forcing 〈wB〉1/2.

A third issue is the transport of salt by the overturning circulation for the different
solutions. For each type of solution, the vertically averaged horizontal salt transport
is solely determined by the surface boundary conditions. If for a particular steady
state, (2.1d) is integrated over the domain [x0, A]× [0, 1] and the boundary conditions
(2.2) are applied, we find (with Le = 1)∫ A

x0

QS (x)dx = −
∫ 1

0

(
uS − ∂S

∂x

)
(x0, z)dz ≡ Φ(x0). (3.4)

The salt flux Φ consists of a diffusive part (in ocean models due to subgrid-scale
processes) and an advective part. If Φ is positive, salt is exported into the region
[0, x0]; if Φ is negative, salt is exported into the region [x0, A]. Hence, if QS (x) is
chosen to be positive at the equator and negative at higher latitudes and symmetric,
e.g. as in (3.1), then x0 <

1
2
A ⇔ Φ > 0 and hence for every solution, independent

of whether it is driven thermally, by salinity or driven by both agents, there will
be export of salt into the region [0, x0]. Although in realistic ocean models, the
flux QS (x) is not perfectly symmetric, it certainly has the same features as in (3.1),
with net equatorial evaporation and poleward freshening. Also in these models there
must be a net export of salt at the south end of the Atlantic basin, since there is
a similar constraint as in (3.4). However, the advective part then consists of both
the density-driven overturning component and a wind-driven flux. The latter may
substantially modify the salt transport, but the net export is always constrained by
the surface forcing as in the current model.

3.3. Physical mechanisms of transition: symmetry breaking

Both the TH-branch and the SA-branch undergo symmetry-breaking bifurcations.
Both 2-cell symmetric solutions become unstable to a perturbation having a particular
spatial pattern. For instance, for values of σ slightly larger than the value at P1 in
figure 4, the symmetric TH-solution will be unstable to a particular pattern even if
this disturbance has a very small ampitude initially. With the continuation method, we
can locate the bifurcation point up to a prescribed accuracy and solve for the linear
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(a)

(b)

(c)

Figure 8. Contour plots of the streamfunction (a), temperature (b) and salinity (c) of the steady
TH-solution near the bifurcation point P1 in figure 4.

stability problem. The spatial pattern of the most unstable perturbation is therefore
contained in the eigenvector corresponding to a zero eigenvalue, near the bifurcation.
To show that a steady state becomes unstable to that particular disturbance, we
aim to describe the causal chain of how this disturbance is amplified through its
interaction with the steady state. A mechanistic understanding of the physics of this
process can be obtained by dividing the instability process into two virtual stages, an
initiation stage and a growth stage. Both stages obviously occur simultaneously in
reality, but this two-stage view has proved to be useful in other stability problems
(Dijkstra & Steen 1991). During the initiation stage, a perturbation is assumed to
be present in the system and we describe the causal chain for how the perturbation
changes the steady state. During the growth stage, a description is provided of how
the changes in the steady state feed back to the perturbations leading to amplification
of the original perturbation.

We first consider the instability of the 2-cell symmetric TH-solution at the bifurca-
tion point P1 (in figure 4). The steady-state streamfunction, temperature and salinity
are plotted in the figures 8(a), 8(b) and 8(c), respectively. The patterns of the most
unstable perturbation are plotted in figure 9. Consider the salinity perturbation in
figure 9(c) as the initial disturbance. This salt perturbation is positive over most of
the northern part of the basin and negative over the southern part, with substantial
gradients near the equator. From the density perturbation (figure 9d), we see that
salinity determines the sign of the density perturbation. The perturbation salt gradient
therefore drives the flow which is seen in figure 9(a). The temperature perturbation
is compatible with this flow: in the northern hemisphere, warm water is transported
northwards and in the southern hemisphere, cold water is transported upwards.

It is observed that the northern cell of the steady state (figure 8a) is strengthened
by the flow disturbance (figure 9a) and the southern cell is weakened. The horizontal
perturbation velocities at the surface induce a horizontal salt transport (figure 8c).
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(a)
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Figure 9. Contour plots of the streamfunction (a), temperature (b), salinity (c) and density (d) of
the perturbation destabilizing the steady solution in figure 8 at P1.

Note that there is no surface perturbation heat transport, because the temperature
perturbation is zero at the surface. In the northern part of the basin, the term u′S̄x,
where the bar denotes the steady state and the prime the perturbation, dominates the
evolution of the salinity perturbation. Since it is negative, the tendency of the salinity
perturbation is positive, leading to an amplification of the original disturbance. Similar
reasoning holds for the southern part, where the sign of u′S̄x is positive. Note that
the temperature perturbation plays a rather passive role in this mechanism, except
that it weakens the perturbation flow, because of its influence on the perturbation
density field. In other words, σ has to be large enough such that the salinity anomaly
induces the perturbation flow. However, the thermal field itself is crucial since the
temperature field maintains the circulation of the equilibrium state.

Next, the instability of the 2-cell SA-solution at the pitchfork P2 is considered.
Although the instability of the TH-solution was addressed schematically by Marotzke
et al. (1988), the destabilization of the SA-branch for decreasing values of σ through
a pitchfork bifurcation has got little attention, if any. We consider the steady
state near the bifurcation point P2 in figure 4. The streamfunction, temperature
and salinity are plotted in figure 10 and the perturbation structures of the mode
inducing the symmetry breaking are shown in figure 11. There is a remarkable
difference between these perturbation structures and those destabilizing the TH-
solution (compare figure 9a with figure 11a). In this case, the flow perturbation is
localized near the equator and does not extend over the whole flow domain. Since the
density is again controlled by salinity (figure 11c, d), the perturbation flow is driven
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Figure 10. Contour plots of the streamfunction (a), temperature (b) and salinity (c) of the steady
SA-solution near the bifurcation point P2 in figure 4.

by the salinity anomaly and the temperature perturbation is again compatible with
the perturbation flow. Owing to the perturbation flow, the left-hand circulation cell
of the basic state (figure 10a) is now strengthened, whereas the right-hand circulation
cell is weakened. Note that a broad scale flow anomaly such as in figure 9a would
cause just the opposite effect, hence the localization of the perturbation is important
to induce the symmetry breaking. The perturbation flow leads to an asymmetric salt
transport through the transport term u′S̄x just as it did in the TH-case, leading to the
amplification of the original perturbation. For instance, to the right of the equator the
horizontal velocity perturbation and the basic-state salt gradient are both negative.
Hence the tendency in the salt field ∂S/∂t ≈ −u′S̄x is negative amplifying the original
negative salt perturbation (figure 11c).

3.4. Physical mechanisms of transition: transition to oscillatory flows

A Hopf bifurcation, for example as found along the asymmetric branch for p = 2.6 (H1

in figure 4), marks the location in parameter space where time-periodic disturbances
are about to be amplified through their interaction with the steady state. In this
section, we concentrate on the Hopf bifurcation H1 along the southward sinking
branch in figure 4; the equilibrium state at this point is plotted in figure 12. The
frequency of the oscillations corresponds to a time scale comparable to the overturning
time scale of the steady state. This motivates us to describe the instability mechanism
since it might be relevant for overturning oscillations, which have been found in
a hierarchy of ocean models and were shown to have a two-dimensional character
(Winton & Sarachick 1993).

The Hopf bifurcation is supercritical, since a limit cycle is found for parameter
values σ slightly larger than the value at bifurcation. This limit cycle disappears
at H2 (figure 4) in a reverse Hopf–bifurcation. Near the Hopf bifurcation H1 the
corresponding eigenfunctions, say (w1, w2), show exactly the time-periodic disturbance
structures to which the steady state becomes unstable. The most unstable time-periodic
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Figure 11. Contour plots of the streamfunction (a), temperature (b), salinity (c) and density (d) for
the perturbation destabilizing the steady solution in figure 10 at P2.

(a)

(b)

(c)

Figure 12. Contour plots of the streamfunction (a), temperature (b) and salinity (c) of the steady
(southern sinking) PP-solution at the Hopf bifurcation point H1 in figure 4.
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perturbation φ(x, y, t) is given by

φ(x, y, t) = w1(x, y) sin(ωt) + w2(x, y) cos(ωt) (3.5)

where ω is the angular frequency, corresponding to the imaginary part of the eigen-
value at the Hopf bifurcation. For ωt = 0, π/4, π/2 and 3π/4 the streamfunction,
density, temperature and salinity corresponding to φ are plotted in figure 13(a–d),
respectively.

Before discussing the oscillation in terms of the changes of the spatial patterns of
the perturbation, we first monitor the changes of relevant integral quantities along
the oscillation. In figure 14, the terms 〈wS〉′ = 〈w̄S ′ + S̄w′〉, 〈wT 〉′ = 〈w̄T ′ + T̄w′〉
and 〈wB〉′ = 〈w̄B′ + B̄w′〉 are plotted along one period of the oscillation. Here the
prime denotes the perturbation quantities (as in figure 13) and the bar to the steady
state (as in figure 12). Within the linearized volume-averaged energy balance for the
perturbations, the latter term 〈w̄B′ + B̄w′〉 appears as the buoyancy forcing. The
buoyancy forcing is mainly determined by the salinity forcing (figure 14), indicating
that the salinity perturbation field mainly drives the oscillatory flow. The thermal
contribution to the forcing, becoming positive over half a cycle of the oscillation,
introduces the phase difference between salinity and buoyancy forcing. In this way,
the oscillation resembles a ‘thermohaline loop’ oscillation as presented in Welander
(1986) in his ‘oscillator gallery’.

We now describe a more detailed mechanism compatible with the results in figure 14,
accepting that we know what the steady state (figure 12) and perturbation structures
(figure 13) look like. Hence, we do not try to answer why these perturbation structures
have this particular shape. Within the initiation stage one needs to describe the causal
chain of why the perturbations return after half a cycle to the initial pattern but with
negative sign, i.e. this stage is concerned with the essence of the oscillation. The
growth phase is concerned with the amplification of the perturbation after one cycle
of the oscillation. We restrict the description to the first stage; we did not succeed in
describing the growth stage in a satisfactory way. Suppose that the salt perturbation
in figure 13(d), applied at t = 0, is the initial disturbance. Since it controls the density
anomaly (figure 13b, t = 0) it causes liquid to sink in the south and to rise over the rest
of the basin, thereby giving the perturbation flow structure in figure 13a (t = 0). The
temperature perturbation is consistent with this flow giving relatively warmer water
in the south through advection and colder water over the central part in the basin
(figure 13c, t = 0). Because the flow perturbation strengthens the equilibrium state
circulation (figure 12a), it transports salt to the central part of the basin (figure 13d,
t = 0.125). The presence of this heavier water substantially weakens the flow in the
northern part (figure 13a, t = 0.125). In this region of weak flow, the heat transport
is dominated by diffusion and colder water appears in the northern region (figure
13c, t = 0.25). This induces a reverse flow in the northern part of the basin (figure
13a, t = 0.25). The reverse flow affects the salt perturbation (figure 13d, t = 0.25),
and the upwelling perturbation flow (figure 13a, t = 0.25) transports salt water
northwards in the central part of the basin. Hereby, the positive salt perturbation
is extended over the whole basin from south to north (figure 13d, t = 0.375). As a
consequency, the salinity is reduced near the southern boundary and this strengthens
the reverse flow perturbation in the basin at half a period of the oscillation (figure
13a, t = 0.375) and the reverse cycle starts. In summary, the oscillation is a based on
a combined advective salt/diffusive heat transport, where the salt perturbation drives
the oscillation (compatible with figure 14). The temperature perturbation becomes
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Figure 13. Contour plots of the streamfunction (a), density (b), temperature (c) and salinity (d) for
the periodic disturbance φ (cf. equation (3.5)) destabilizing the steady solution in figure 12 at H1.
The patterns are shown for four different times ωt/2π along the orbit. The dimensionless angular
frequency ω = 0.326, which implies a period in the order of the overturning time scale of the steady
PP-solution.
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Figure 14. Plot of the integral perturbation quantities determining the buoyancy forcing of the
perturbation flow at the Hopf bifurcation H1.

important only in regions where the perturbation flow is weak, inducing the phase
difference (figure 14) between salinity and buoyancy forcing.

4. Sensitivity to different surface boundary conditions
4.1. Fresh-water forcing

In this section, the shape of the fresh-water flux forcing is varied by decreasing the
parameter p from 2.6 to 2.0. For p = 2.0, the spatial pattern of the fresh-water flux
forcing and the thermal forcing have a similar shape. The bifurcation diagram for
the same parameter values as in figure 4 (A = 5, Ra = 4× 104) is presented in figure
15 and differs from figure 4 in that the Hopf bifurcations have disappeared and two
additional limit points L4 and L5 occur on the asymmetric branches. Along each
asymmetric branch a complex-conjugate pair of eigenvalues appears as least stable
modes in the linear stability analysis, just as in the p = 2.6 case, but this pair does
not cross the imaginary axis before the limit point L3 is reached. The oscillatory
perturbations are fairly similar to those for the case described in the previous section,
and the occurrence of the amplification of the oscillatory perturbations for the case
p = 2.6 is likely to be associated with the decrease in fresh-water flux polewards (cf.
figure 3).

One might conjecture that these overturning oscillations only exist as bifurcations
from the PP-solutions if the fresh-water flux has a mimimum within each hemisphere
(cf. figure 3). However, careful analysis shows that this is not the case. What happens
in the bifurcation diagram is that the second Hopf bifurcation H2 in figure 4 moves
towards H1 with decreasing p and eventually both coalesce between p = 2.25 and
p = 2.3 and disappear. This demonstrates the sensitivity of the oscillatory instabilities
to the spatial pattern of the surface fresh-water flux.

4.2. Thermal forcing

As has been discussed in many papers on the subject, mixed boundary conditions are
not a good representation of the air–sea interaction processes. In reality, the ocean
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Figure 15. Bifurcation diagram as in figure 4 but for p = 2.0.

is coupled to an atmosphere and the temperature of the upper ocean layer is not
fixed but determined by the local heat balance between ocean and atmosphere. The
atmosphere is scale selective with respect to sea surface temperature anomalies in
that small-scale anomalies are more damped than large-scale anomalies (Marotzke
1993). Similarly, the fresh-water flux is determined by the vapour transport through
the atmosphere and the local salt flux through the ocean–atmosphere surface is zero
(Huang 1993).

In this section, the bifurcation structures of the thermohaline flows are determined
for a more general form of the thermal boundary condition. Our main aim is to
investigate systematically, whether the bifurcation structure as found in the previous
section for mixed boundary conditions is robust when more realistic boundary condi-
tions are prescribed. In other words, are the changes due to a more general thermal
boundary condition qualitative and/or quantitative ?

The temperature condition at the surface is changed to a Newtonian cooling condi-
tion. In large-scale ocean models the ocean–atmosphere heat flux Hf is parameterized
as Hf = ρ0 Γ Cp (T ∗ −T ), where Γ is interpreted as a ratio of the mixed layer depth
and a relaxation time scale and T ∗ as a radiation equilibrium temperature. Here, it
is assumed that this temperature is prescribed and equal to TS . The non-dimensional
heat transfer boundary condition then becomes

∂T

∂z
= −B(T − TS (x)) (4.1)

where B = HΓ/κT . The parameter B is a ratio of the diffusive time scale of (vertical)
heat transfer and the relaxation time scale H/Γ . Typical values used in large-scale
ocean models give values for B of order 100. In the limit B → ∞ the restoring
boundary condition for temperature is obtained.

The bifurcation diagram for the case p = 2, A = 10, Ra = 104 and B = 100 is
presented in figure 16. Although the Newtonian cooling boundary condition gives
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Figure 16. Bifurcation diagram as in figure 4 but for p = 2.0, A = 10, Ra = 104 and the
Newtonian cooling condition, equation (4.1), with B = 100.

B P1 P2 = L2 L1 L3

∞ 0.0639 0.0584 0.1616 0.2329
100 0.0638 0.0585 0.1686 0.2358
10 0.0609 0.0570 0.1555 0.2249
2 0.0505 0.0495 0.0976 0.1302

Table 2. Values of σ at the relevant bifurcation points for A = 10, Ra = 104 and different B

a slight shift in the position of the bifurcation points, the qualitative dynamical
behaviour remains the same as for mixed boundary conditions for this value of B. In
Table 2, the σ-values of the relevant bifurcation points P1, P2, L1, L2 and L3 are shown
for several values of B. The value of σ at P1 decreases with decreasing B, since the
perturbation temperature gradient at the surface becomes smaller. According to the
symmetry-breaking instability mechanism as described above, the salt perturbation
is not counteracted that much and can induce an asymmetric flow disturbance at
smaller σ. In the limit B → 0, the boundary condition reduces to ∂T/∂z = 0 and
therefore the flow is purely saline driven; only the SA-branch remains.

In Zhang et al. (1993), flows driven by both prescribed fresh-water and heat flux
were considered. For this case, they found no PHC, whereas this transition was found
under mixed boundary conditions for the same parameters. In the current model,
with a linear equation of state, there is effectively one tracer when both fluxes are
prescribed since one can add the temperature and salinity equations and obtain a
boundary condition just for the sum. With one tracer, only one branch remains and
no symmetry breaking occurs. In this case, there are no bifurcation points between
the TH and SA parts of the branch. After a restoring run, one always arrives (after
switching to prescibed fluxes) at a unique solution, which is either thermally or saline
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driven. Hence, even very large salinity perturbations (as used in experiment 4 in Zhang
et al. 1993) are not able to induce a transition to another flow pattern. Although
in Zhang et al. (1993) a nonlinear equation of state is used, the nonlinearity is weak
and the large difference of the behaviour of the flow for both boundary conditions,
as is seen in their results, is not surprising.

5. The bifurcation structure at large A

In this section, we determine the origin of the multiple equilibria by following
the path of the relevant bifurcation points in the three-dimensional parameter space
(Ra, A, σ) for B → ∞ and compare these results with those in Cessi & Young (1992)
and Thual & McWilliams (1992). From the results above, it follows that there are
σ-intervals where multiple stable symmetric equilibria occur. Also there are regions
where both stable asymmetric and symmetric equilibria occur simultaneously. Below
we demonstrate that the occurrence of symmetric multiple solutions is caused by a
cusp structure associated with the coalescence of the limit points L1 and L2. The
origin of symmetry breaking is another singularity, associated with the coalescence of
the two pitchfork bifurcations P1 and P2. Since two parameters are involved to obtain
this singularity, it has codimension-two (Guckenheimer & Holmes 1983). For large
aspect ratio A, each pitchfork bifurcation Pi moves very close to the limit points Li
and eventually the origin of the complete bifurcation structure in parameter space is
a codimension-three bifurcation. The unfolding of this singularity in parameter space
contains all possible bifurcation diagrams.

For A = 10 and two values of Ra (102 and 103), the bifurcation diagrams in
figure 17a are obtained. The value of A = 10 corresponds to intermediate k in
Thual & McWilliams (1992), i.e. k = 0.63. In the small buoyancy forcing limit,
Ra = 102, the bifurcation diagram is quite simple (figure 17a) since a unique solution
exists for all σ. The thermally dominated solution at small σ deforms smoothly into
the salinity dominated solution at large σ; the transition point is a near-motionless
solution. Basically, this is the same picture as in Thual & McWilliams (1992) for small
a. At Ra = 103, two bifurcation points appear on the symmetric branch; a close-up of
this bifurcation diagram is shown in figure 17(b). At both bifurcation points, linearly
stable asymmetric PP-solutions arise, which are related by symmetry. The path in the
(σ, Ra)-plane of both pitchforks is plotted in figure 17(c) by computing bifurcation
diagrams for several values of Ra. When Ra is decreased from 102 both pitchforks
coalesce and disappear (shown as a limit point in figure 17c). Since two parameters, σ
and Ra, are needed to obtain this type of singularity, say O1, it is a codimension-two
bifurcation. The bifurcation diagram, for example in figure 16 is easily visualized to
arise from figure 17(b) due both to the movement of symmetry breaking bifurcation
points with increasing Ra and the appearance of additional limit points. Indeed,
figure 17(c) indicates that these limit points are already present at Ra = 2× 103 since
the value of σ at P2 is already smaller than that at P2.

Thual & McWilliams (1992) were able to determine the path of the limit points L1

and L2 within the same model, using transient techniques, but they did not calculate
the paths of the pitchfork bifurcations. They proposed that a cusp (associated with
the coalescence of two limit points) is central to the occurrence of symmetry breaking
and therefore to the appearance of the asymmetric PP-solutions. However, in our
computations for A = 10, the limit points disappear at values of Ra larger than the
value at O1. In our case, the path of the pitchfork bifurcations (g1 and g2 in their
figure 3) therefore encloses the cusp instead of appearing within the cusp structure.
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Figure 17. (a) Bifurcation diagram as in figure 4, but for A = 10 and two values of Ra, 102 and
103. (b) Close-up of (a) for Ra = 103. (c) Path of both pitchfork bifurcations P1 and P2, as shown
in (b), in the (σ, Ra)-plane.
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Figure 18. Bifurcation diagrams as in figure 17(a) (only the symmetric branch) for different aspect
ratio A at fixed Ra = 5× 103.

This is not due to the different values of Pr used, since we find the same structure for
Pr = 103. Hence, for relatively small A the sketch in their figure 3 is slightly incorrect
since symmetry breaking is not associated with the cusp, but with the coalesence of
two pitchfork bifurcations. The latter singularity is the right ‘organizing centre’ for
the symmetry breaking; it is also the generic bifurcation in this Z2-symmetric system
(Golubitsky & Schaeffer 1985).

At larger A, however, the pitchfork bifurcations Pi on the symmetric branch move
towards the limit points Li on this branch. This is seen in figure 18, where the
symmetric branch is shown together with the locations of the pitchfork bifurcations
for A = 10, 20 and 40 for Ra = 5×103. On the vertical axis in figure 18, the maximum
value of the streamfunction ψM is now plotted. For A = 40, the value of σ at the
pitchfork and the limit point coincide already up to numerical accuracy. When Ra is
decreased for this case, the limit points disappear at the same time as the pitchforks.
Hence, this is a codimension-three singularity, say O2, which is the ‘organizing center’
of the occurrence of both symmetric and asymmetric multiple equilibria in these types
of flows.

In Cessi & Young (1992), an amplitude equation was derived in the large-aspect-
ratio limit (A → ∞) and relatively small Ra. In this section we investigate whether
this amplitude equation captures the singularity O2 of the system. With ε = π/A we
rescale:

ỹ = −π + 2x ε; ũ = u ε; w̃ = w; T̃ = 4 Ra ε2 T ; S̃ = 4 Ra ε2 S (5.1a)

to give the dimensionless equations as in Cessi & Young (1992) with

a = 4 Ra ε2; b = 4 σ Ra ε2. (5.1b)

The steady amplitude equation for the first-order (in ε) depth-averaged salinity profile
Ŝ becomes

Ŝ ′′ + µ2[Ŝ ′(Ŝ ′ − T ′S )
2
]′ + r QS = δ2Ŝ ′′′′ (5.2a)

with µ proportional to a/ε, r = σ/ε2 and the primes indicate differentiation to y. The
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parameter δ serves to allow for boundary layers in regions of the flow with steep
gradients (to regularize the equation (5.2a)).

We consider QS and TS given by (2.6) and (3.1), which become rescaled as QS (y) =
3 cos y, TS (y) = 0.5(cos y + 1). These forcing functions give similar results as those
originally considered in Cessi & Young (1992), i.e. QS (y) = TS (y) = cos y, for slightly
different values of r and µ; this can be shown by rescaling Ŝ in (5.2a). With the latter
choice of QS and TS , equation (5.2a) can be integrated once in y to give the boundary
value problem

δ2χ′′ = r sin y + µ2χ(χ+ sin y)2 + χ, (5.2b)

χ(−π) = χ(π) = 0 (5.2c)

with χ = Ŝ ′. Solutions of this boundary value problem were computed numerically, by
using standard ODE software (Doedel 1981). For δ = 0.1 and µ2 = 7 the bifurcation
diagram with respect to r is shown in figure 19(a). This diagram is characterized by
two pitchfork bifurcations P1 and P2, which connect the TH-, PP- and SA-branches.
Similar to the large-A results with the full numerical model, the symmetric branch
has two limit points and the location of the pitchforks coincides with those of the
limit points up to numerical accuracy. The path of these limit points that in the
(r, µ)-plane for several values of δ is shown in figure 19(b). It would seem that only
two parameters were necessary to obtain this cusp (a codimension-two singularity).
However, note that these bifurcation diagrams are valid for very small ε (large A)
which causes the pitchforks and the limit points to coincide. Hence, ε serves as the
third parameter and therefore the cusp shown in figure 19(b) is in fact a codimension-
three singularity, which corresponds to the singularity O2 obtained earlier. For smaller
values of δ this cusp shifts to smaller values of r and µ and converges in the limit
δ → 0 to the diagram presented in Cessi & Young (1992), with the cusp located at
r = 8

9
and µ2 = 3.

Hence, although the solutions of the amplitude equation in the limit δ → 0 are not
globally defined (as shown in Cessi & Young 1992), they are globally defined at slightly
positive δ. The solutions then indeed show boundary layer jumps connecting those
solution parts, which already existed locally at δ = 0. The qualitative correspondence
between the results of (5.2b, c) and our numerical results demonstrates that the
amplitude equation indeed captures the highest-order singularity leading to multiple
equilibria in parameter space.

6. Summary and discussion
We have tried to give a quite complete picture of the qualitative dynamical be-

haviour of a two-dimensional Boussinesq model of surface-forced thermohaline flows.
The use of path-following techniques was demonstrated to be an effective tool to solve
for all equilibrium points in parameter space. A quite detailed picture of the con-
nection between solutions and the physics of the transitions between flow regimes is
obtained which would be hard to determine by computing trajectories. As is well-
known, under restoring boundary conditions for both temperature and salinity, there
is only a single branch of solutions connecting salinity-dominated or temperature-
dominated solutions when varying the relative forcing strengths. When the parameters
are chosen such that the 2-cell thermally dominated pattern is reached for t→∞, this
solution corresponds to a point on the TH-branch (cf. point R in figure 2). When one
switches to mixed boundary conditions, the bifurcation diagrams show several possible
evolution scenarios if this state is perturbed; we consider those implied by figure 4.
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Figure 19. Bifurcation diagram obtained with the amplitude equation (5.2) derived in Cessi &
Young (1992) for parameters δ = 0.1 and µ2 = 7. The symmetric branch is dash-dotted, the solid
branches are the asymmetric solutions. Path of the pitchfork bifurcations P1 and P2 (in a) in the
(µ, r)-plane for different values of δ.

If the TH-state is stable (values of σ to the left of P1), then it is unique and any
perturbation will eventually decay. If it is unstable, several evolution scenarios are
possible. For values of σ between P1 and P2, one of the asymmetric states will be
reached since these are the only stable states. For values of σ between P2 and the
Hopf bifurcation H1, the SA-solution can be reached. This would correspond to a
complete collapse of the overturning circulation similar to the occurrence of a PHC
in a 1-hemispheric ocean model. The occurrence of a PHC is thus connected to an
overlap of an (unstable) TH-branch and a (stable) SA-branch. However, one of the
asymmetric states can also be reached. In this case, there would be a transition from a
symmetric 2-cell flow to a pole-to-pole flow and either direction of these flows would
be possible to obtain by providing the right perturbation. This behaviour is similar
to that observed in a 2-hemispheric ocean model (Bryan 1986).

The switch from restoring to mixed boundary conditions is not essential; restoring
boundary conditions only help the arrival somewhere in state space. However, for
each set of parameters one would have a different fresh-water flux, which may modify
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the bifurcation structure quantitatively. Hence, in this way no clear sensitivity to
parameters in the model is studied, but rather the combined effect of the change
of the parameter and the fresh-water flux needed to maintain the restored surface
salinity field.

The above-mentioned evolution scenarios are very robust under mixed boundary
conditions and not sensitive to the shape of the fresh-water flux. They still occur
when a more general interfacial heat transfer condition is used to model the air–sea
interaction, for example a Newtonian cooling condition. Although there is much
quantitative sensitivity associated with the shift of bifurcation points with parameter
changes, the same transitions can still occur but for different parameter values.

The reason for the qualitative correspondence between the results from this two-
dimensional model and the results from ocean models is that the details of the
momentum balance may not be that crucial compared to the balances of heat and
salt. One argument in favour of this is that the physics of the symmetry-breaking
phenomenon, responsible for the asymmetric states, does not crucially depend on
the details of the velocity perturbation. As long as its north-south component leads
to asymmetric flow changes, the original salt perturbation will be amplified. Two-
dimensional models, which incorporate the effects of rotation and/or the effect of
the wind-driven gyres, also find the same instability mechanism of the TH-solution
(Vellinga 1996).

The physical mechanism of symmetry breaking should therefore have some gen-
erality and was described in detail as an initiation stage and a growth stage. A salt
perturbation drives a perturbation flow which asymmetrically changes the circulation
cells of the equilibrium state. The interaction of this perturbation flow with the
density distribution causes a lateral salt flux at the surface, whereas the lateral surface
heat flux is zero. This leads to asymmetric surface buoyancy transport and amplifies
the original perturbation. The same mechanism, albeit with different steady-state and
perturbation patterns, also causes the symmetry breaking occurring at the SA-branch.
A critical Rayleigh number exists for both bifurcations (figure 17c) because the per-
turbation is otherwise damped by viscosity and/or diffusive effects. A sufficiently
large value of σ is required such that the thermal field is not able to counteract the
asymmetric flow perturbation caused by the salinity perturbation.

Referring back to figure 4, for values of σ larger than H1, both the SA-branch
and a limit cycle may be reached. The associated periodic orbit corresponds to an
overturning oscillation which results from advection of salt. Thermal diffusion acts
to give a phase difference between the salinity and buoyancy perturbation fields and
is essential to the oscillation. However, the oscillation was found to be sensitive to
the fresh-water flux profile. By changing the shape of the fresh-water flux slightly in
the polar regions, the Hopf bifurcations easily disappear.

It was demonstrated that the ‘organising centre’ of the occurrence of the asymmetric
solutions is a codimension-two bifurcation, the singularity O1. This is most clearly
seen by considering the flow for relatively small aspect ratio A. The bifurcation O1

only appears when a critical Rayleigh number is exceeded. There is only one branch
of solutions at sufficiently small Ra and no asymmetric solutions exist. At larger Ra,
symmetry-breaking bifurcation points appear as an unfolding of O1. This singularity
lies behind the ‘superposition principle’ proposed in Thual & McWilliams (1992):
asymmetric states always arise as a ‘superposition’ of half a TH-symmetric circulation
and half an SA-circulation. Although this qualitative behaviour is in agreement with
that proposed by Thual & McWilliams (1992) the highest singularity of importance
to symmetry breaking is not the cusp due to the coalescence of limit points, but O1.
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The cusp becomes important for the appearance of multiple symmetric equilibria as
seen at large aspect ratio A and the complete bifurcation structure in parameter space
arises through an unfolding of the codimension-three singularity O2. It was shown
that the amplitude equation derived in Cessi & Young (1992) indeed captures this
‘organising centre’.

Finally, the solution diagrams presented here can be regarded as the underlying
perfect bifurcation structures. Any asymmetry posed on the system, for example
asymmetric boundary conditions, will destroy the pitchfork bifurcations and force
reconnections of the branches (i.e. through limit points). By starting from the
symmetric problem, one is able to follow these branches systematically in parameter
space. The imperfection structure of the solution diagrams due to flux-correction and
asymmetric forcing is currently under study.
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